Continuous exposure to non-lethal doses of sodium iodate induces retinal pigment epithelial cell dysfunction

نویسندگان

  • Xiao-Yu Zhang
  • Tsz Kin Ng
  • Mårten Erik Brelén
  • Di Wu
  • Jian Xiong Wang
  • Kwok Ping Chan
  • Jasmine Sum Yee Yung
  • Di Cao
  • Yumeng Wang
  • Shaodan Zhang
  • Sun On Chan
  • Chi Pui Pang
چکیده

Age-related macular degeneration (AMD), characterized by progressive degeneration of retinal pigment epithelium (RPE), is the major cause of irreversible blindness and visual impairment in elderly population. We previously established a RPE degeneration model using an acute high dose sodium iodate to induce oxidative stress. Here we report findings on a prolonged treatment of low doses of sodium iodate on human RPE cells (ARPE-19). RPE cells were treated continuously with low doses (2-10 mM) of sodium iodate for 5 days. Low doses (2-5 mM) of sodium iodate did not reduce RPE cell viability, which is contrasting to cell apoptosis in 10 mM treatment. These low doses are sufficient to retard RPE cell migration and reduced expression of cell junction protein ZO-1. Phagocytotic activity of RPE cells was attenuated by sodium iodate dose-dependently. Sodium iodate also increased expression of FGF-2, but suppressed expression of IL-8, PDGF, TIMP-2 and VEGF. Furthermore, HTRA1 and epithelial-to-mesenchymal transition marker proteins were downregulated, whereas PERK and LC3B-II proteins were upregulated after sodium iodate treatment. These results suggested that prolonged exposure to non-lethal doses of oxidative stress induces RPE cell dysfunctions that resemble conditions in AMD. This model can be used for future drug/treatment investigation on AMD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space

Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...

متن کامل

A Swine Model of Selective Geographic Atrophy of Outer Retinal Layers Mimicking Atrophic AMD: A Phase I Escalating Dose of Subretinal Sodium Iodate.

PURPOSE To establish the dose of subretinal sodium iodate (NaIO3) in order to create a toxin-induced large animal model of selective circumscribed atrophy of outer retinal layers, the retinal pigment epithelium (RPE), and photoreceptors, by spectral-domain optical coherence tomography (SD-OCT) and immunocytochemistry. METHODS Fifteen male and female healthy Yorkshire pigs received unilateral ...

متن کامل

Histological and Electrophysiological Changes in the Retinal Pigment Epithelium after Injection of Sodium Iodate in the Orbital Venus Plexus of Pigmented Rats.

PURPOSE To characterize histopathologic and electroretinographic (ERG) changes in the retina of pigmented rats injected with sodium iodate in order to establish a model of retinal degeneration for future cell therapy studies. METHODS In 50 male pigmented rats weighing 250-300 grams, NaIO3 was injected into the left orbital venous plexus at 40 and 60 mg/kg doses (25 eyes in each group). Fourte...

متن کامل

Radioprotection by tempol: Studies on tissue antioxidant levels, hematopoietic and gastrointestinal systems, in mice whole body exposed to sub- lethal doses of gamma radiation

Background: Ionizing radiation induces the production of reactive oxygen species (ROS), which play an important causative role in cell death. Wholebody exposure of mice to gamma radiation leads to diminution of tissue antioxidant defense systems increases the peroxidative damage to membrane lipids and damages the haematopoietic and gastrointestinal systems. Tempol (TPL), a cell membranep...

متن کامل

Retinal Cell Death Caused by Sodium Iodate Involves Multiple Caspase-Dependent and Caspase-Independent Cell-Death Pathways

Herein, we have investigated retinal cell-death pathways in response to the retina toxin sodium iodate (NaIO3) both in vivo and in vitro. C57/BL6 mice were treated with a single intravenous injection of NaIO3 (35 mg/kg). Morphological changes in the retina post NaIO3 injection in comparison to untreated controls were assessed using electron microscopy. Cell death was determined by TdT-mediated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016